
1

Arm Scalable Matrix Extension

June 20th , 2025

Didier Martinot

2

Table of Content:

• High level introduction of Scalable Matrix Extension (SME)

• Presentation of some use-cases leveraging SME technology

3

Scalable Matrix Introduction – High-Level Introduction

4

Jazelle®

VFPv2

Armv5 VFPv3/v4

Adv SIMD

Virtualization

LPAE

Armv7

Enhanced Crypto

Secure EL2

Branch Target Identifier

Pointer Authentication

Scalar Floating Point

Full Armv7 Compatibility

Improved Virtualization

bfloat

Armv8

Armv6

TrustZone®

Thumb®-2

SIMDThumb®

Armv4

The Arm Architecture: Continually Innovating and Evolving Vector
Processing -

• 8/16-bit integer addition &

subtraction

• Within core 32-bit registers

containing 4 bytes or 2 halfwords

• 8/16/32-bit integer and 32-bit float arithmetic

• 16×128-bit vector registers, Q0-Q15 (as pairs of

32×64-bit floating-point registers, D0-D31)

• Added 64-bit integer and full IEEE single- and double-precision (later half-precision).

• 32×128b vector registers, V0-V31 (not pairs of 64-bit FP registers)

• Quick Recap on the early stage of the journey…

5

From Vector Processing to Matrix Processing

Augmented and
Virtual Reality

Scientific
simulations

Computer
Vision

Machine
Learning

Digital Signal
Processing

As of now, NEON is essential for many key workloads running in a CPU:

Yet - a lot of these applications require more and more vector processing !

6

SVE and SVE2(Armv9)

SVE2

Match Detect & Histogram

Non-Temporal G/S

Multi-Precision Arithmetic

NEON DSP ++

Bitwise Ternary Logic

Bitwise Permute

ML Extensions
(FP16 + DOT

product)

SVE

v8.6 BF16, FP &
Int8 Matmul

Gather-Load &
Scatter-Store

Speculative
Vectorisation

Scalable Vectors
Per-Lane

Predication

• Armv8 - Scalable Vector Extension

(SVE) for the High Performance

Computing market

• Enables scientific workloads such

as climate modelling, vaccine

research and materials research

• Enables Vector Length Agnostic

(VLA) programming

• Tackles traditional barriers to auto-

vectorization

• Armv9 SVE2 extends the

functionality to cover all traditional

NEON use cases

• NEON cannot be extented to higher vector length and there is a limit to the amount of instruction
parallelism you can implement in a CPU (at reasonable cost)

 – Need of SIMD capability the VL of which can be decided by the u-architecture beyond 128.

7

From Vector Processing to Matrix Processing

Augmented and
Virtual Reality

Scientific
simulations

Computer
Vision

Machine
Learning

Digital Signal
Processing

Vector Extension Architecture is now future proof to serve many key workloads running

on CPU:

Yet - a lot of these applications are working not only on vectors but also on

matrices and multidimensional tensors !

8

Matrix Multiplication as the Sum of Vector Outer Product

• We typically learn to perform matrix multiplication by performing independent dot products (one
result at a time)

• But, a matrix product can be expressed as a sum of vector outer products:

𝐴𝐵 = ෍

𝑘=1

𝑝

𝑎𝑘
𝑐𝑜𝑙⨂𝑏𝑘

𝑟𝑜𝑤

Partial sums are computed as the outer product of a

column vector from the left matrix and a row vector from the right matrix

A0,2 A0,3

A1,2 A1,3

A2,2 A2,3

A3,2 A3,3

B0,3

B1,3

B0,2

B1,2

B0,1

B1,1

B0,0

B1,0

A0,0 *

B0,3

A1,0 *

B0,3

A0,0 *

B0,2

A1,0 *

B0,2

A0,0 *

B0,1

A1,0 *

B0,1

A0,0 *

B0,0

A1,0 *

B0,0

A2,0 *

B0,3

A3,0 *

B0,3

A2,0 *

B0,2

A3,0 *

B0,2

A2,0 *

B0,1

A3,0 *

B0,1

A2,0 *

B0,0

A3,0 *

B0,0

B2,3B2,2B2,1B2,0

B3,3B3,2B3,1B3,0

A0,1

A1,1

A2,1

A0,0

A1,0

A2,0

A3,0 A3,1

A0,1 *

B1,3

A1,1 *

B1,3

A0,1 *

B1,2

A1,1 *

B1,2

A0,1 *

B1,1

A1,1 *

B1,1

A0,1 *

B1,0

A1,1 *

B1,0

A2,1 *

B1,3

A3,1 *

B1,3

A2,1 *

B1,2

A3,1 *

B1,2

A2,1 *

B1,1

A3,1 *

B1,1

A2,1 *

B1,0

A3,1 *

B1,0

A0,2 *

B2,3

A1,2 *

B2,3

A0,2 *

B2,2

A1,2 *

B2,2

A0,2 *

B2,1

A1,2 *

B2,1

A0,2*

B2,0

A1,2 *

B2,0

A2,2 *

B2,3

A3,2 *

B2,3

A2,2 *

B2,2

A3,2*

B2,2

A2,2 *

B2,1

A3,2 *

B2,1

A2,2 *

B2,0

A3,2 *

B2,0

A0,2 *

B2,3

A1,2 *

B2,3

A0,2 *

B2,2

A1,2 *

B2,2

A0,2 *

B2,1

A1,2 *

B2,1

A0,2*

B2,0

A1,2 *

B2,0

A2,2 *

B2,3

A3,2 *

B2,3

A2,2 *

B2,2

A3,2*

B2,2

A2,2 *

B2,1

A3,2 *

B2,1

A2,2 *

B2,0

A3,2 *

B2,0

A
m× k

B
k× n

C
m× n

9

The Scalable Matrix Extension (SME)…

Matrix processing capabilities with:
• New vector outer product instructions
• A 2D array storage ZA to store and accumulate

partial sums

SME extends the Scalable Vector Extensions
(SVE and SVE2)
• Leverages the existing SVE

software ecosystem

Streaming SVE2 enables an implementation
to maximize MatMul resources utilization

Compute capability is made available to
software when entering ”streaming mode”
(dedicated architecture state). Compute has
its own vector length (SVL) which may be
different from the VL when not in streaming
mode

Z0
Z1
Z2
Z3

Z31

Streaming SVE2

Data Path

SVL

P0

P
1

P15

Matrix Multiplier (MatMul)
and Accumulator (ZA

SVL

Load / Store Unit

Streaming Mode Compute Unit:

10

U-architecture Implementation Flexibility: Built-in CPU or Shared

• A Streaming Mode Compute Unit (SMCU) can be shared by many CPUs
• Different configurations for different trade-offs between cost and performance

CPU0

SMCU

CPU3

SMCU

Built in CPU

CPU0

SMCU

CPU3

Shared SMCU

CPU0

SMCU

CPU1 CPU2

SMCU

CPU3

Multiple shared SMCU

• Favouring single-thread performance and performance on low thread
count

• Streaming VL does not need to align with the in-CPU (SVE) VL.
• Less predictable performance from compute standpoint

• Favouring multi-threading
performance, re-use of In-
CPU SVE hardware for SSVE
instruction – same VL

• (more) Predictable
performance from compute
standpoint

Importantly: Implementation remote from the CPU does not require any software
modification – deported compute pipeline.

11

Flexible Storage and Compute Formats
SME outer product operations – a large set of data types

FP16 * FP16

FP16
Simple outer product

BF16 * BF16

BF16
Simple outer product

INT16 * INT16

INT32
Sum of two S/UINT16

outer products

32 INT1*INT1

INT32
Binary outer products

SME2
Optional from

Armv9.2SME

BF16 * BF16

FP32

Sum of two BF16
outer products

FP16 * FP16

FP32
Sum of two FP16

outer products

Widening
half-precision

FP32 * FP32

FP32
Simple outer product

FP64 * FP64

FP64
Simple outer product

(optional)

Non-widening
FP

Non-widening
half-precision

INT8 * INT8

INT32
Sum of four S/UINT8

outer products

INT16 * INT16

INT64
Sum of four S/UINT16

outer products
(optional)

FP8 * FP8

FP32
Sum of four FP8

outer products

Integers Widening FP8

2 and 4-bit
+ Binary +
int32 acc.

LUTI2/4

FP8 * FP8

FP16
Sum of two FP8

outer products

Optional from
Armv9.2

12

Architecture Extension 2024 (Armv9.6)

Improved performance and flexibility

2-in-4 Structured Sparsity Support

Introduction of 1:2 and 2:4 outer

product instructions

Dense x Sparse operation

Sparse weights compressed in memory

and directly consumed by the instruction

Compute throughput is doubled

Four independent quarter-tile
outer products

Improved scalability / better resource

efficiency

Enables significant increase in compute

throughput for matrix edges, small number

of batches, …

Compressed in memory

13

Why is SME more than a dedicated matrix operation engine ?

• SCMU contains both outer-product operation AND SVE instructions operating on the same

vector length (SVL), because application/kernel are not “only” matrix multiplication:

Application Pre-Processing Post-Processing

LLM De-Quantization Block Level Scaling, Re-Quantization

DFT Operand Recombination Twiddle Factor

Structure From

Motion/SLAM

Data Rearrangement/Tranposition Matrix Multiplication border computation (Small-Matrix

Computation)

• Typical
Kernel:

14

Built-in implementation

Shared Implementation

Implementation options and parameters
Architecture

State

Implementation

S
M

C
U

SVE-128

SME-svl

VPU-ssve

MATMUL-mm

L1 $

(c)

&

WB

(wb)

b PE

SVE-

128
SVE-vl

VPU-

sve

m PE

SVE-

128
SVE-vl

VPU-

sve

L PE

SVE-

128
SVE-vl

VPU-

sve

Live

Context

s (t)

m PE

SVE-

128
SVE-vl

VPU-

sve

L PE

SVE-

128
SVE-vl

VPU-

sve

S
M

C
U

…

…

vl Vector Length

svl Streaming Vector Length

t Number of contexts

sve SVE2 throughput

mm MatMul throughput

ssve Streaming SVE2 throughput

wb SMCU Write Buffer size

c SMCU L1/L2 Cache sizes

clk_ratio Clock ratio between CPU and SMCU

smcu Number of SMCU

pe PE per SMCU

bw L1, L2, L3 , Interconnect and DDR Bandwidths

Homogenous vs heterogenous (Big, medium,

LITTLE

PE

SVE-vl

VPU-sve

SVE-

128
SME-svl

VPU-ssve
MATMUL-

mm

PE

SVE-vl

VPU-sve

SVE-

128
SME-svl

VPU-ssve
MATMUL-

mm

PE

SVE-vl

VPU-sve

SVE-

128
SME-svl

VPU-ssve
MATMUL-

mm…

15

Scalable Matrix Extension – Use-Cases

16

Use-Case A: AI and Generative AI
Generating new content

Natural Language
Processing

Chat bot / LLM, translation,
summarization, sentiment

analysis, …

Audio
Speech recogniction,

Voice control, subtitles,
Audio/Speech
generation, …

Computer Vision
Image classification, object

detection, image
segmentation, image

retrieval, depth estimation,
…

Image/Video
Image generation, Video

generation, 3D scene
generation, …

Multi-Modal
Image generation

Music generation

17

SME2 Acceleration of LLM –

Chatbot use case corresponding to 256

input tokens – 256 output tokens

SME2 kernels in llama.cpp framework
• 4-bits quantized GEMM & GEMV

• Batched strided fp16fp32 GEMM & GEMV

0

1

2

3

4

5

6

LLAMA2-7B Phi2-2.7B Tiny LLAMA-1.1B

Relative Performance Gain of 1 CPU w/ SME
vs 2 CPUs in Term of Tokens per Second

Time to first token phase Text generation phase

Figures based on architecture performance model

18

• General Idea:
• Leveraging SME - Not a given …

• Need to re-shuffle state-of-the-art DFT computation flow to exhibit outer product operations.

• Underlying trade-off consists in increasing the number of basic mathematical operations (== fewer

intermediate results re-use) but ensuring that those operations better fit outer product operations (which is

accelerated by SME)

• Outer-Product based Implementation: Radix size (r) – DFT r x r x r elements:

Use-Case B: Discrete Fourier Transform (DFT)

-> 3*r GEMM operations [r x r]*[r x r]
-> 2*r elements-wise products operations of size [r x r]. r elements-wise operations are done with the same T[r x r]
twiddle matrix while the r other element-wise operations are done with different Tr[r x r] twiddle matrices

19

• Radix-16 has been selected for this proof of concept – selecting SME SVL 512

• Radix-16 is bounded to be less accurate than lower radix-based DFT. Two complex-float32 cases

have been analysed – DFT-4096 and DFT-2D 256x256

DFT – Radix16 Accuracy & SME Performance

fftw_float64 4.849 e-16

fftw_float32 1.98 e-7

Radix16-float32 – SME 2.38 e-7

DFT-2D 256x256

fftw_float64 4.1 e-16

fftw_float32 1.7 e-7

Radix16-float32 – SME 2.06 e-7

DFT-1D 4096

SMCU Performance vs CPU

DFT-4096 > 7x

DFT-2D 256x256 > 8.5x

• Simulation comparing SMCU-512 vs a typical CPU containing two vector units – SVE-128:

20

Use Case C: Bundle Adjustment (BA)

• Bundle Adjustment algorithm is an essential part of most Augmented Reality (SLAM) and 3D

reconstruction (SfM) applications techniques.

Building/maintaining a 3D-cloud point from a collection of

images using BA technique:

Front-end processing is aiming at

extracting ”features” (corners) from

image and performing matching

Back-end (BA) performs a multi-

frame combined camera

pose/attributes and point cloud

positions optimization (essential for

accurate localization or 3D

reconstruction).

21

Bundle Adjustment: High-Level Principle.

0 2

0

Edges

Vertices: Landmarks

Vertices: Frame Poses

1 3

1 2

• Graph Optimization problem:

• Optimize camera poses – Bottom Vertices - as well as 3D
point cloud (landmarks) position- Top Vertices - minimizing
the reprojection errors – Edges

• Reprojection error: distance between 3D point reprojection onto a
given image and its observed trace (ORBSLAM2, BAL, …)

• Some implementations are aiming at reducing the photometric
error.

Jacobian

Computation
Hessian

Schur

Decomposition

Cholesky

Decomposition/

Solver

Point Cloud

Updates

(Very) Outer Product -
Friendly

(Somewhat) Outer Product -
Friendly. Small Matrix Size, small
accumulation depth [9x9], [3x2],
[9x2],[9x3],…

Vector
Processing

Vector
Processing

22

SfM – SME / Eigen (NEON/SVE) Performance Boost

Flavor Camera

Parameters

Graph (poses/landmarks/density) Gain (single thread)

BAL Format

/FP64

9 Venice (BAL): 52/64K/10% > 4x

9 100/5000/10% > 5x

9 100/5000/20% > 6x

9 100/5000/30% > 6x

9 100/5000/40% > 5x

Simulation: Assuming SMCU-512 vs a typical CPU with 4 vector units of VL 128

• Problem sizing is impact the benefit of SME usage

• Cholesky/Solver: Number of poses

• Schur Decomposition: Density

23

Conclusion & Summary

• Arm has introduced a new matrix extension (SME) which provide significant flexibility for its

implementation – ranging from vector length, shared/non-shared implementation,…

• Implementation can adjust compute throughput dedicated to vector pipelines versus matrix

multiplication compute throughput based on their targeted application

• Application that can benefit SME are numerous – for instance:
• (Obviously) those relying on large GEMM computes – genAI, Dense Cholesky, …

• But also those relying on smaller GEMM and/or tightly coupled interaction with vector processing – Linear

Algebra based algorithm relying on iterative linearization/solver, DFT

• Yet - some algorithms may need to be rewritten to expose matrix operations – DFT is one

example.

Thank You

	Slide 1: Arm Scalable Matrix Extension
	Slide 2: Table of Content:
	Slide 3: Scalable Matrix Introduction – High-Level Introduction
	Slide 4: The Arm Architecture: Continually Innovating and Evolving Vector Processing -
	Slide 5: From Vector Processing to Matrix Processing
	Slide 6: SVE and SVE2(Armv9)
	Slide 7: From Vector Processing to Matrix Processing
	Slide 8: Matrix Multiplication as the Sum of Vector Outer Product
	Slide 9: The Scalable Matrix Extension (SME)…
	Slide 10: U-architecture Implementation Flexibility: Built-in CPU or Shared
	Slide 11: Flexible Storage and Compute Formats
	Slide 12: Architecture Extension 2024 (Armv9.6)
	Slide 13: Why is SME more than a dedicated matrix operation engine ?
	Slide 14: Implementation options and parameters
	Slide 15: Scalable Matrix Extension – Use-Cases
	Slide 16: Use-Case A: AI and Generative AI
	Slide 17: SME2 Acceleration of LLM –
	Slide 18: Use-Case B: Discrete Fourier Transform (DFT)
	Slide 19: DFT – Radix16 Accuracy & SME Performance
	Slide 20: Use Case C: Bundle Adjustment (BA)
	Slide 21: Bundle Adjustment: High-Level Principle.
	Slide 22: SfM – SME / Eigen (NEON/SVE) Performance Boost
	Slide 23: Conclusion & Summary
	Slide 24

